Functions of smooth muscle

Sompol Tapechum, M.D., Ph.D.
Department of Physiology
Faculty of Medicine Siriraj hospital

Objectives

- สิ่งที่ต้องการทำให้กล้ามเนื้อเรียบหดตัว
- สิ่งที่มีผลต่อการหดตัวของกล้ามเนื้อเรียบได้
 - extracellular Ca^{2+}
 - acetylcholine
 - adrenaline
 - อุณหภูมิ
 - Membrane depolarization with KCl and BaCl_2
Smooth muscle

Smooth Muscle
Contraction: Mechanism

1. Intracellular Ca²⁺ concentrations increase when Ca²⁺ enters cell and is released from sarcoplasmic reticulum.
2. Ca²⁺ binds to calmodulin (CaM).
4. MLCK phosphorylates light chains in myosin heads and increases myosin ATPase activity.
5. Active myosin crossbridges slide along actin and create muscle tension.
Smooth Muscle Relaxation: Mechanism

1. Free Ca²⁺ in cytosol decreases when Ca²⁺ is pumped out of the cell or back into the sarcoplasmic reticulum.
2. Ca²⁺ unbinds from calmodulin (CaM).
3. Myosin phosphatase removes phosphate from myosin, which decreases myosin ATPase activity.
4. Less myosin ATPase results in decreased muscle tension.

Smooth Muscle Contraction

1. cAMP (Relaxes Smooth Muscle)
2. cAMP-MLCK-MLCK-P (Contracts Smooth Muscle)
3. Ca²⁺ + Calmodulin (MLCK activation)
4. Ca²⁺-Calmodulin-MLCK activates
5. Actin + Myosin (Relaxed)
6. ATP
7. Cross Bridge Cycling
8. Actin-Myosin-LC₇-ADP-P
9. ADP + P_i
10. Power Stroke
11. Head Detachment
12. Re cock Head 90°
13. ATP
14. Myosin Light Chain Phosphatase
15. cAMP-MLCK-MLCK-P
16. Ca²⁺-Calmodulin-Inhibitory
17. Inactive MLCK
18. (Contracts Smooth Muscle)
Excitation-contraction coupling

Increase $[\text{Ca}^{2+}]_i$ can be accomplished by two methods

- Membrane depolarization
 - It is the major mode of stimulation.
 - Opening of voltage-gated Ca^{2+} channels (L-type) and increase Ca^{2+} influx

- Receptor-mediated $[\text{Ca}^{2+}]_i$ increase
 - This is a mechanism by which hormones, mediators, neurotransmitters and drugs act on smooth muscle.
 - Increase release from intracellular store

Control of intracellular Ca^{2+}

[Diagram showing the control of intracellular Ca^{2+}]
Duration of smooth muscle contraction

Slow wave potential

- Membrane potential of unitary smooth muscle consistently oscillates; *Slow wave potential*
- The depolarization by slow wave increase intracellular Ca\(^{2+}\) and causes constant and stable low level of contraction (*Tonic contraction or tone*)
Action potential

- If the threshold is reached, there will be action potential (spike potential) on top of slow wave.
- This is due to the opening of voltage-gated Ca\(^{2+}\) channels (L-type).
- These action potential can propagate to other cells via gap junction.

Smooth muscle contraction

1. Slow wave potential
 - Determines the smooth muscle tone
 - Frequency of slow wave determines the frequency of contraction
2. Spike potential
 - Number of spikes indicates the amplitude of contraction

Action potentials and twitches can be superimposed on rhythmic activity.
Pacemaker

- The slow wave potential in smooth muscle is initiated in Pacemaker cell called interstitial cell of Cajal (ICC).
- The ICC are electrically coupled and also electrically coupled with smooth muscle via gap junction.

![Propagation of waves in ICC network](image)

Slow wave
Interstitial cell of Cajal

- ICC networks in pacemaker regions express the ionic mechanism to generate slow waves.
- No single ICC serves as a fixed, dominant pacemaker.
- Slow wave propagates at rate 5 mm/s
- Slow wave propagation in ICC network is regenerative
- Slow waves electrotonically conduct into smooth muscle cells, which are electrically coupled to the interstitial cells of Cajal (ICC).
Mechanism of pacemaker activity

- Nonselective cationic channels (NSCC)
 - Ca\(^{2+}\)-inhibit NSCC

 \[\text{Low Ca}^{2+} \rightarrow \text{NSCC activation} \]
 \[\text{Reduce Ca}^{2+}\text{ influx} \rightarrow \text{NSCC inhibition} \]
 \[\text{Mitochondrial Ca}^{2+} \text{ Uptake} \]
 \[\text{Localized release of Ca}^{2+}\text{ from IP3 receptors} \]

Enteric nervous system

- Neurotransmitters released from ENS can condition the electrical activity at both the interstitial cell of Cajal and the smooth muscle.
 - Release of excitatory transmitters activates nonselective cation channels and increases the effectiveness of slow waves to bring the muscle cells to threshold.
 - Release of inhibitory transmitters activates potassium channels, which decreases the probability of reaching threshold.
- Also, neurotransmitters can modulate contraction of smooth muscle
External modulators

- Autonomic nervous system and endocrine system can modify electrical activity in both ICC and smooth muscle and also affect smooth muscle contraction.

Specimen

- Frog’s pyloric ring
Experimental setup

- Monitor
- Force transducer
- Tissue chamber
- Smooth muscle
- Aquarium pump
- PowerLab

Experiment

- Characteristic of smooth muscle contraction
- Effects of
 - Extracellular Ca²⁺
 - 0.5% CaCl₂
 - Ca²⁺-free solution
 - Acetylcholine
 - Adrenaline
 - Cold
 - 0.5% KCl
 - 0.5% BaCl₂

Control: 5 minutes Experiment: 5 minutes Wash twice
Results

Chart Window

Frequency = contraction/minute

amplitude

report

Report

<table>
<thead>
<tr>
<th>Control 1</th>
<th>Experiment</th>
<th>Control 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude (mV)</td>
<td>Frequency (min)</td>
<td>Amplitude (mV)</td>
</tr>
<tr>
<td>0.5%CaCl₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca²⁺ free (0 Ca²⁺)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adrenaline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5%KCl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discussion

Effect of extracellular Ca\(^{2+}\):
- **increase Ca\(^{2+}\)**

- **Effect on ICC**
 - The depolarization needs Ca\(^{2+}\) influx
 - increase Ca\(^{2+}\) ➔ increase slow wave amplitude

- **Effect on smooth muscle cell**
 - more Ca\(^{2+}\) entry when Ca\(^{2+}\) channels are opened

- **Effect on smooth muscle contraction**
 - Increase amplitude and tone
 - may increase frequency
Effect of extracellular Ca\(^{2+}\): increase Ca\(^{2+}\)

Chart Window

Effect of extracellular Ca\(^{2+}\): low Ca\(^{2+}\)

- Effect on ICC
 - Low Ca\(^{2+}\) ⇒ slow and small slow wave
- Effect on smooth muscle cell
 - Less Ca\(^{2+}\) entry
- Effect on smooth muscle contraction
 - Lower amplitude and tone
 - Lower frequency?
Effect of extracellular Ca\(^{2+}\): low Ca\(^{2+}\)

![Graph showing the effect of extracellular Ca\(^{2+}\): low Ca\(^{2+}\)]

Effect of acetylcholine

- **Effect of ACh on ICC**
 - Activation of non selective cationic conductance (M3: mediated by PKC)
 - Increase amplitude and frequency of slow wave
- **Effect of ACh on smooth muscle cell**
 - GI smooth muscle expresses M2 and M3 muscarinic cholinergic receptors
 - Increase intracellular Ca\(^{2+}\) (M3: mediated by IP\(_3\))
 - Reduce inactivation of MLCK (M2: decrease cAMP)
- **Effect of ACh on smooth muscle contraction**
 - Increase frequency, amplitude and tone
Effect of acetylcholine on ICC

Exterior

Interior

Voltage-gated Ca\(^{2+}\)-channel

NSCC

Na\(^+\)

ACh

M3

PLC

DAG

IP3

Sarcoplasmic reticulum

Protein kinase C

Effect of acetylcholine on smooth muscle cell

Exterior

Interior

Voltage-gated Ca\(^{2+}\)-channel

ACh

M3

PLC

DAG

IP3

Sarcoplasmic reticulum

Protein kinase C

Acetylcholine release

Calmodulin

MLCK

Sarcoplasmic reticulum

Smooth muscle contraction
Effect of acetylcholine

- Adrenergic receptors are expressed at cholinergic terminal
- Adrenaline inhibits acetylcholine release

Effect of adrenaline

- **Effect of adrenaline on ICC**
 - ICC do not express adrenergic receptor
 - Adrenergic receptors are expressed at cholinergic terminal
 - Adrenaline inhibits acetylcholine release

- **Effect of adrenaline on smooth muscle cell**
 - Smooth muscle cells express β-adrenergic receptors (increase cAMP)
 - Decrease intracellular Ca\(^{2+}\) (increase SR uptake)
 - Membrane hyperpolarization (increase K\(^{+}\) conductance)
 - Inactivate MLCK

- **Effect of adrenaline on smooth muscle contraction**
 - Decrease frequency, amplitude and tone
Effect of adrenaline: smooth muscle cell

Exterior

Voltage-gated Ca\(^{2+}\)-channel

Interior

β2

Adenylase cyclase

+ cAMP

Sarcoplasmic reticulum

Calmodulin

MLCK

 uptake

Smooth muscle contraction

Effect of adrenaline

Chart Window
Effect of cold

- Effect of cold on ICC and smooth muscle cell
 - Decrease cellular activity
 - Decrease ATP production
 - Decrease Na·K pump activity
 - Decrease Ca^{2+} pump activity

- Effect of cold on smooth muscle contraction
 - Decrease contraction
 - Initially, tone may increase due to residual ATP and Ca^{2+}
Effect of extracellular K⁺

- Effect of K⁺ on ICC and smooth muscle cell
 - membrane depolarization increase slow wave and action potential
 - increase intracellular Ca²⁺

- Effect of K⁺ on smooth muscle contraction
 - Increase amplitude, tone and frequency

![Chart Window](chart.png)
Effect of extracellular Ba$^{2+}$

- Effect of Ba$^{2+}$ on ICC and smooth muscle cell
 - Ba$^{2+}$ blocks some K$^+$ channels (K$_v$)
 - Membrane depolarization
 - Increase intracellular Ca$^{2+}$
 - Ba$^{2+}$ enters Ca$^{2+}$ channels and acts as Ca$^{2+}$

- Effect of Ba$^{2+}$ on smooth muscle contraction
 - Increase amplitude, tone and frequency
Conclusion

- Smooth muscle can contract without nerve supply.
- The contraction is initiated by intrinsic pacemaker.
- The contraction is slow (duration over 200 ms).
- Extracellular Ca\(^{2+}\) is important for the contraction. (Ca\(^{2+}\) free solution)
- Neurotransmitters modulate smooth muscle contraction.