Pancreatic Hormones

Aims
- Pancreatic hormones
 - Insulin
 - Glucagon
- Describe the fundamental physiological mechanisms controlling the secretion of insulin and glucagon into the blood stream.
- Understand the effects of insulin and glucagon on glucose, fatty acid, and amino acid metabolism in the various body tissues.

Anatomy and histological of pancreas

Islet of Langerhans

Aims
- Pancreatic hormones
 - Insulin
 - Glucagon
- Describe the fundamental physiological mechanisms controlling the secretion of insulin and glucagon into the blood stream.
- Understand the effects of insulin and glucagon on glucose, fatty acid, and amino acid metabolism in the various body tissues.

Insulin
Insulin processing

- Rough ER
- Vesicle
- Golgi
- Processing in vesicles
- Cleavage of proinsulin
- Insulin secretion

Factor affecting insulin secretion

- Diabetogenic H
- Parasympathetic
- Sympathetic
- Insulin
- Somatostatin

Glucose-stimulated insulin secretion mechanism

- Glucose
- Glucose-6-P
- GK
- Hexokinase
- Pyruvate
- Electron transport chain
- Mitochondria
- Acetyl Co A
- ATP
- [ATP]/[ADP]

Normal blood glucose

- Normal blood glucose
 - Basal plasma insulin concentration

Insulin secretion

- ATP dependent
- Non ATP dependent
Insulin transport

Insulin (peptide hormone)

Dissolve in blood plasma

Half life of insulin is less than 10 minutes

Insulin Action on Cells:

Dominates in Fed State Metabolism

Insulin signaling

- Glucose transport
- Protein synthesis
- Lipid synthesis
- Glycogen synthesis
- Growth and Gene expression

Insulin actions

Metabolic effect

Carbohydrate

- Facilitates glucose transport into muscle, adipose and many other tissues but not brain
- Stimulates glycogen production (glycogen synthesis) and inhibits glycogen breakdown (glycogenolysis) in liver and skeletal muscle

Protein

- Facilitates amino acids into muscle and other tissues
- Stimulates protein synthesis and inhibits protein breakdown

Lipid

- Facilitates free fatty acids into cells (lipoprotein lipase)
- Promotes formation of fatty acids and glycerol from glucose
- Promotes synthesis of triglyceride and inhibits their breakdown (hormone sensitive lipase)
Insulin actions

Growth

- Promotes growth of the fetus
- Promotes postnatal growth by inhibiting protein degradation
- Needed for promotion of IGFs

Insulin deficit ➔ Diabetes Mellitus

- **Absolute:** Insulin dependent diabetes mellitus (IDDM)/ Type I ~ 5-10%
- **Relative:** Non insulin dependent diabetes mellitus (NIDDM)/ Type II ~ 90-95%
 - Defect in insulin secretion
 - Insulin resistance
 - Receptor
 - Postreceptor

Diagnosis Diabetes Mellitus

- A casual plasma glucose level (taken at any time of day) of 200 mg/dL or greater when the symptoms of diabetes are present.
- A fasting plasma glucose value of 126 mg/dL or greater.
- An OGTT value in the blood of 200 mg/dL or greater measured at the 2-hour interval.

Insulin deficiency

- Glucose uptake
- Glycogenolysis
- Gluconeogenesis
- Protein breakdown

- Change in blood
- Plasma glucose (hyperglycemia)

- Change in urine
- Glucose in urine (glycosuria)
- Osmotic diuresis
- Frequency of urination (polyuria)
- Dehydration, Thirst (polydipsia)
- Food consumption (polyphagia)
- Weight loss

- Sign and symptoms

- Change in blood
- Plasma lipid used as fuel
 - Ketosis

- Change in urine
 - Ketones in the urine (ketonuria)
Signs and symptoms of diabetes mellitus

- Hyperglycemia
- Glucosuria (Osmotic diuresis)
- Hyperlipidemia
- Ketonemia
- Protein wasting
- Weight loss

Insulin excess

- Overdose insulin
- Insulinoma
 - Hypoglycemia
 - Neuroglycopenia
 - Hunger
 - Dizziness
 - Coma
 - Cathecolamine: anxiety, sweating, tachycardia

Glucagon

- 29 amino acids identical to enteroglucagon
- Glucagon act by binding to its receptor and activated G protein which cause an increase in cAMP.
- Glucagon has the effect of increasing blood glucose levels (opposite effect of insulin)

Enteroglucagon

Processing of pro-glucagon in intestinal L-cells

<table>
<thead>
<tr>
<th>Glicentin</th>
<th>GRPP</th>
<th>Glucagon</th>
<th>IP-1</th>
<th>GLP-1</th>
<th>IP-2</th>
<th>GLP-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prohormone convertase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulated by inactivation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP-NV</td>
<td>$t_{1/2} \sim 1$ min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agonist (active)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inactive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Factor affecting glucagon secretion

- Sympathetic activity
- Secretin
- CCK
- Parasympathetic activity
- Amino Acids
- Insulin
- Glucose

Glucagon secretion
Glucagon actions

Metabolic effect

- Stimulates breakdown of glycogen stored in the liver and inhibits glycogen synthesis
- Stimulates gluconeogenesis in the liver

Carbohydrate

- Stimulates amino acids uptake in the liver
- Stimulates protein breakdown and inhibits protein synthesis

Protein

- Stimulates lipolysis in fat and liver
- Stimulates ketone formation in the liver

Lipid

- Stimulates lipolysis in fat and liver
- Stimulates ketone formation in the liver

Insulin & Glucagon Regulate Metabolism

Fed state insulin dominates

- Glucose oxidation
- Glucose synthesis
- Lipid synthesis
- Protein synthesis

Fast state glucagon dominates

- Glucose oxidation
- Glucose production
- Lipogenesis
- Ketogenesis
High blood glucose

Insulin released by B cells of pancreas

Fat cells take in glucose from blood

Achieve Normal blood Glucose levels

Low blood glucose

Glucagon released by A cells of pancreas

Liver releases Glucose into blood

Insulin and glucagon cause the tight control of blood glucose concentration

Glucagon excess and deficit are rare

- **Glucagon excess**: cancer of alpha cells (glucagonomas)
- There is no report of glucagon deficit.

Somatostatin

- Somatotrophin-release inhibiting factor (SRIF)
- Also found in nerve terminals and other tissues.
- Somatostatin is a local inhibitor of insulin and glucagon secretion.
- Also function as a neurotransmitter/neuromodulator in the control of motor activity and cognitive functions.

Pancreatic polypeptide (PP)

- 36 amino acids
- Secretion of PP is mainly under autonomic control.
- PP is released following feeding or during hypoglycaemia
- Role of PP is still not understood.